Extensions 1→N→G→Q→1 with N=C92 and Q=S3

Direct product G=N×Q with N=C92 and Q=S3
dρLabelID
S3×C92162S3xC9^2486,92

Semidirect products G=N:Q with N=C92 and Q=S3
extensionφ:Q→Aut NdρLabelID
C921S3 = C92⋊S3φ: S3/C1S3 ⊆ Aut C92276+C9^2:1S3486,36
C922S3 = C922S3φ: S3/C1S3 ⊆ Aut C92273C9^2:2S3486,61
C923S3 = C923S3φ: S3/C1S3 ⊆ Aut C92546C9^2:3S3486,139
C924S3 = C924S3φ: S3/C1S3 ⊆ Aut C92546C9^2:4S3486,140
C925S3 = C925S3φ: S3/C1S3 ⊆ Aut C92546C9^2:5S3486,156
C926S3 = C926S3φ: S3/C1S3 ⊆ Aut C92186C9^2:6S3486,153
C927S3 = C9×C9⋊S3φ: S3/C3C2 ⊆ Aut C9254C9^2:7S3486,133
C928S3 = C928S3φ: S3/C3C2 ⊆ Aut C92243C9^2:8S3486,180

Non-split extensions G=N.Q with N=C92 and Q=S3
extensionφ:Q→Aut NdρLabelID
C92.1S3 = C273C18φ: S3/C1S3 ⊆ Aut C92546C9^2.1S3486,15
C92.2S3 = C92.S3φ: S3/C1S3 ⊆ Aut C92276+C9^2.2S3486,38
C92.3S3 = C9×D27φ: S3/C3C2 ⊆ Aut C92542C9^2.3S3486,13
C92.4S3 = C9⋊D27φ: S3/C3C2 ⊆ Aut C92243C9^2.4S3486,50

׿
×
𝔽